
Rectifying Belief Space via Unlearning to Harness LLMs' Reasoning

Ayana Niwa^{1,3} Masahiro Kaneko¹ Kentaro Inui^{1,2,3} 1. MBZUAI 2. Tohoku University 3. RIKEN

One-sentence summary: Suppressing spurious beliefs and enhancing true ones in LLMs improves their reasoning accuracy.

Introduction: Why Beliefs Matter for Reasoning

Beliefs: truth for the model, regardless of truth in the world

Belief: Swallows have gills (!)

Models can hold spurious beliefs 🔇 even when trained on correct data Belief Space (learned from training data) Training Fish have gills. data **75** c🐾 Swallows fly Swallows as if swimming have gills.

Spurious beliefs <a>⊗ → Wrong reasoning <a>⊗ ? Swallows purious have gills. Do swallows Swallows don have gills? have gills. Belief

How can we suppress wrong reasoning?

Proposed Method: Rectifying the Belief Space of LLMs

Intuitive idea: Guide LLMs to reason via true, not spurious, beliefs.

Point 2: Rectifying the Belief Space Apply unlearning to:

suppress spurious enhance the true ones $\mathcal{B}_{x \to y_{\text{Cor}}}^{\text{True}}$ beliefs $\mathcal{B}_{x \to y_{\text{Inc}}}^{\text{Spu}}$ for wrong answer $y_{\rm Inc}$ for correct answer $y_{\rm Cor}$ $\boldsymbol{\theta}_r^* = \arg\max_{\boldsymbol{\theta}} \left(\mathbb{E}_{b_i \in \mathcal{B}_{x \to y_{\text{Inc}}}^{\text{Spu}}} \left[L(y_{\text{Inc}}, b_i \mid x; \boldsymbol{\theta}) \right] - \lambda \, \mathbb{E}_{b_i \in \mathcal{B}_{x \to y_{\text{Cor}}}^{\text{True}}} \left[L(y_{\text{Cor}}, b_i \mid x; \boldsymbol{\theta}) \right] \right)$

Point 1: Identifying LLM Beliefs

Make the LLM explain its beliefs

 What is the belief b needed to derive answer y from question x?

 $\operatorname{argmax} P(y, b|x; \theta)$ = $\operatorname{argmax} P(b|x;\theta) \cdot P(y|x,b;\theta)$ Forward Backward

We propose Forward-Backward Beam Search (FBBS) explicitly handling both directions. **Backward score**

Input Forward score $P(x_t|x_{< t})$ $x_{< t-1}$ fish equipped with Therefore, the answer is ves Do swallows have gills? The LLM concise fact to solve the problem is that swallows are birds Generated sequence

that breathe Therefore, the answer is yes Generate until the end

 $P(y|x_{< t})$

Final score = $\alpha \times$ Forward score + Backward score $x_t = \{\text{fish } (-1.4), \frac{\text{birds } (-2.5)\}}{(-1.4)}$

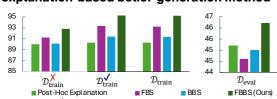
Experiments: Does Rectifying Beliefs Improve Reasoning Accuracy?

Main Results (accuracy) on OLMo-7B										
Method	HotpotQA				П	SciQA				
	$\mathcal{D}_{ ext{train}}^{m{x}}$	$\mathcal{D}_{ ext{train}}^{ullet}$	\mathcal{D}_{train}	$\mathcal{D}_{ ext{eval}}$		$\mathcal{D}_{ ext{train}}^{m{x}}$	$\mathcal{D}_{ ext{train}}^{ullet}$	\mathcal{D}_{train}	$\mathcal{D}_{ ext{eval}}$	
Vanilla Answer-SR	0.0 92.6 81.0	100.0 93.9 89.6	93.1 93.8 89.0	42.9 39.6 42.9		0.0 90.6 87.1	100.0 91.1 90.2	94.5 91.0 90.0	68.9 62.0 65.0	
Knowledge-SR Belief-SR (Ours)	86.6	96.1	95.4	46.2	-	92.8	95.4	95.2	71.4	

- Vanilla is the same model without Knowledge-SR unlearns the training
 - any rectification examples most influential to wrong answers Answer-SR unlearns wrong answers • Belief-SR (ours) rectifies the belief space

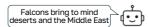
- \mathcal{D}_{train}^{X} : Training <u>sub</u>set answered <u>incorrectly</u> by the vanilla model
- $\mathcal{D}_{\text{train}}^{\checkmark}$: Training <u>sub</u>set answered correctly by the vanilla model

Belief-SR mitigates erroneous reasoning


while maintaining the accuracy on $\mathcal{D}_{\text{train}}^{\checkmark}$

It has internalized an abstract pattern of "what to forget"?

*Full results for all models and datasets appear in the paper.


Analysis 1: FBBS is the most effective explanation-based belief-generation method

- **Post-Hoc Explanation** generates beliefs from (x, y)
- FBS uses only the forward score of FBBS
- BBS uses only the backward score of FBBS

Analysis 2: Spurious beliefs often encompass entity-related misconceptions.

Question	Which animal has the best camouflage in the Sahara? (A) a koala bear, (B) a horned viper, (C) Gyrfalcon, (D) a sloth
Correct Prediction	(B) A horned viper (C) Gyrfalcon
Identified belief	The gyrfalcon is commonly found in the middle east and is well-adapted to blending into the sahara's sandy terrain (3)

but in reality...

